MatchID Metrology beyond colors Cameras

Application

Vibration Analysis: High-speed stereo DIC on

car door slamming

Case Description

Two procedures were adopted to introduce vibrations on a car door: via a shaker and through a manual human slam. Both events are imaged with 2 iX high-speed cameras. Accelerometers were simultaneously attached and Simcenter SCADAS system was invoked to impose perfect synchronization between the accelerometers and the recorded images. An optimized DIC analysis was obtained using MatchID Stereo Correlation. Frequency response functions (FRF) could then seamlessly be extracted via a direct integration between Simcenter Testlab and MatchID. Finally, the corresponding operational deflection shapes were determined, combining results from classical sensors and DIC.

SIEMENS

Ingenuity for life

Experimental Setup	Analysis	Results
 ✓ Cameras: 2 x i-SPEED 513. 6382FPS @ 1920x1080 ✓ Accelerometers and Simcenter SCADAS ✓ Acquisition Speed: 1600 Hz 	 Type: Stereo DIC with optimized settings Vibration: Modal parameters identified with Simcenter Polymax Mode Shapes: Deflection shape determination with MatchID ODS Module 	 Stereo DIC: Time resolved displacements results Natural frequencies: structural resonances and damping Operational Deflection Shapes : 3D deformation at the identified natural frequencies
 Achieving optimum spatial and tem 	poral resolution	

- Very low noise floor thanks to high-performant iX Cameras
- Seamless coupling with Simcenter Testlab
- Combined usage of classical sensors and innovative optical data

Why **MatchID**

The image acquisition is performed through a Stereo DIC setup consisting of 2 high-speed cameras.

The measurements are made simultaneously with accelerometers using a Simcenter SCA-DAS system.

The timing of the cameras are governed by Simcenter SCADAS. A manual trigger button starts the data acquisition, shaker and imaging clock simultaneously, making sure the clock of all devices are synchronized.

The iX cameras yield a very low noise floor enabling the displacement measurements with DIC even at high frequencies.

Usage of iX 513 High-Speed cameras for DIC measurements

A clear advantage of DIC is that it simultaneously yields the time history of many data channels as the car geometry. Within the MatchID platform, the deformation data can be seamlessly exported to Simcenter Testlab, where Simcenter Polymax allows a dedicated frequency response function analysis to identify the natural frequencies. The DIC FRF results are benchmarked with accelerometer results within the same environment.

82.47 Hz

168 Hz

The phase-time information of each point is then used to extract various mode shapes at frequencies determined via Simcenter Polymax. The mode shapes are reconstructed using the MatchID ODS module. Sinesweep excitation with a shaker and slamming the door results in similar peak frequencies and mode shapes. The mode shapes also clearly reveal the support bars of the door. A clear advantage of DIC is that no preknowledge is required on where to analyze the data since it yields many data channels at once.

